Problem

Source: Sharygin 2010 Final 9.7

Tags: geometry, tangent circles, right triangle, symmetry



Given triangle $ABC$. Lines $AL_a$ and $AM_a$ are the internal and the external bisectrix of angle $A$. Let $\omega_a$ be the reflection of the circumcircle of $\triangle AL_aM_a$ in the midpoint of $BC$. Circle $\omega_b$ is defined similarly. Prove that $\omega_a$ and $\omega_b$ touch if and only if $\triangle ABC$ is right-angled.