Problem

Source: BMO Shortlist 2015 G1 (Romania)

Tags: geometry, circumcircle, trigonometry



In an acute angled triangle $ABC$ , let $BB' $ and $CC'$ be the altitudes. Ray $C'B'$ intersects the circumcircle at $B''$ andl let $\alpha_A$ be the angle $\widehat{ABB''}$. Similarly are defined the angles $\alpha_B$ and $\alpha_C$. Prove that $$\displaystyle\sin \alpha _A \sin \alpha _B \sin \alpha _C\leq \frac{3\sqrt{6}}{32}$$(Romania)