The given angle condition implies $BQ$ is tangent to $(PQM)$,so $BQ^2=BP \times BM$,since $ANPM$ is cyclic,it implies $BQ^2=BP \times BM=BN \times BA$,so $BQ$ is also tangent to $(ANQ)$.Now,we use a lemma:
Consider $\bigtriangleup ABC$ and $\bigtriangleup CDE$,then $(ABC)$ and $(CDE)$ are tangent to each other if and only if $\angle BAC+\angle CDE=\angle BCE$.
Proof of if direction:Let $CF$ be the common tangent to $(ABC)$ and $CDE$.Then $\angle BAC+\angle CDE=\angle BCF+\angle ECF=\angle BCE$,which proves our claim.
Proof of only if direction:Let $CF$ be the tangent to $(ABC)$.Since,$\angle BAC=\angle BCF$,$\implies \angle ECF=\angle CDE$,hence $CF$ is the common tangent of $(ABC)$ and $(CDE)$.
Coming back to our problem,notice that
$\angle AQN=360^{\circ}-(\angle NQP+\angle PQM+\angle AQM)$.Using our lemma for $\bigtriangleup AQN$ and $\bigtriangleup PQM$,we have $\angle NQP=\angle NAQ+\angle QMP$ and $\angle AQM=\angle ANQ+\angle QPM$.Hence,
$\angle AQN=360^{\circ}-(\angle NAQ+\angle QMP+\angle ANQ+\angle QPM+\angle PQM) =360^{\circ}-(180^{\circ}-\angle QNP-\angle AMQ+180^{\circ}-\angle MAQ-\angle NPQ+\angle PQM)=\angle QNP+\angle MAQ-\angle PQM+\angle AMQ+\angle NPQ=\angle AMQ+\angle NPQ$.
So,$(PQN)$ and $(AQM)$ are tangent to each other.Notice that $C$ lies on the radical axis of $(PQN)$ and $(AQM)$,so $CQ$ must be tangent to both the circles.Hence,$\angle QNC=\angle PQC \blacksquare$.