Problem

Source: Iranian Geometry Olympiad 2018 IGO Intermediate p4

Tags: geometry, 3-Dimensional Geometry, 3D geometry, polyhedron, Centroid



We have a polyhedron all faces of which are triangle. Let $P$ be an arbitrary point on one of the edges of this polyhedron such that $P$ is not the midpoint or endpoint of this edge. Assume that $P_0 = P$. In each step, connect $P_i$ to the centroid of one of the faces containing it. This line meets the perimeter of this face again at point $P_{i+1}$. Continue this process with $P_{i+1}$ and the other face containing $P_{i+1}$. Prove that by continuing this process, we cannot pass through all the faces. (The centroid of a triangle is the point of intersection of its medians.) Proposed by Mahdi Etesamifard - Morteza Saghafian