Problem

Source: Iranian Geometry Olympiad 2018 IGO Advanced p4

Tags: tangential quadrilateral, geometry, cyclic quadrilateral, angle bisector



Quadrilateral $ABCD$ is circumscribed around a circle. Diagonals $AC,BD$ are not perpendicular to each other. The angle bisectors of angles between these diagonals, intersect the segments $AB,BC,CD$ and $DA$ at points $K,L,M$ and $N$. Given that $KLMN$ is cyclic, prove that so is $ABCD$. Proposed by Nikolai Beluhov (Bulgaria)