Problem

Source: Iranian Geometry Olympiad 2018 IGO Advanced p2

Tags: geometry, equal segments, acute triangle, Circumcenter, orthocenter



In acute triangle $ABC, \angle A = 45^o$. Points $O,H$ are the circumcenter and the orthocenter of $ABC$, respectively. $D$ is the foot of altitude from $B$. Point $X$ is the midpoint of arc $AH$ of the circumcircle of triangle $ADH$ that contains $D$. Prove that $DX = DO$. Proposed by Fatemeh Sajadi