Problem

Source: Iranian Geometry Olympiad 2018 IGO Advanced p1

Tags: geometry, circles, equal segments



Two circles $\omega_1,\omega_2$ intersect each other at points $A,B$. Let $PQ$ be a common tangent line of these two circles with $P \in \omega_1$ and $Q \in \omega_2$. An arbitrary point $X$ lies on $\omega_1$. Line $AX$ intersects $ \omega_2$ for the second time at $Y$ . Point $Y'\ne Y$ lies on $\omega_2$ such that $QY = QY'$. Line $Y'B$ intersects $ \omega_1$ for the second time at $X'$. Prove that $PX = PX'$. Proposed by Morteza Saghafian