Problem

Source: Irmo 2015 p2 q9

Tags: algebra, polynomial, integer root, Integer Polynomial



Let $p(x)$ and $q(x)$ be non-constant polynomial functions with integer coeffcients. It is known that the polynomial $p(x)q(x) - 2015$ has at least $33$ different integer roots. Prove that neither $p(x)$ nor $q(x)$ can be a polynomial of degree less than three.