Let the the intersection of the sides with the numbers $15$ and $9$ be $ A$ and the other circles on the clockwise, respectively $B, C, D$.
$A+B+9 = B+C+6 = D+C+12 = D+A+15 = A+C+17 = S$.
$2S = A+B+9+C+D+12 = 144$, once that $A+B+C+D = 123$. This give us that $S = 72$.
$(A+B+9)+(A+D+15)+(A+C+17) =2A + 123 + 41= 3S = 216.$ So $A = 26$.
$A+B+9 = S=72$ give us $B = 37$.
$B+C+6 = S = 72 \Rightarrow C = 29$.
$A+D+15 = S = 72 \Rightarrow D = 31$.
So the answer is $(A,B,C,D) = (26,37,29,31)$(sorry for any latex mistake, I'm still learning it)