Let $ABCD$ be a rectangle with $AB\ge BC$ Point $M$ is located on the side $(AD)$, and the perpendicular bisector of $[MC]$ intersects the line $BC$ at the point $N$. Let ${Q} =MN\cup AB$ . Knowing that $\angle MQA= 2\cdot \angle BCQ $, show that the quadrilateral $ABCD$ is a square.
Problem
Source: Danube 2015 Junior P4
Tags: geometry, rectangle, perpendicular bisector, angles, square