Let $ABCD$ be a cyclic quadrangle, let the diagonals $AC$ and $BD$ cross at $O$, and let $I$ and $J$ be the incentres of the triangles $ABC$ and $ABD$, respectively. The line $IJ$ crosses the segments $OA$ and $OB$ at $M$ and $N$, respectively. Prove that the triangle $OMN$ is isosceles.
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(23.cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.52, xmax = 18.48, ymin = -4.84, ymax = 6.3; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.);
draw((5.24,2.8)--(10.84,2.82)--(11.08,-0.78)--cycle, linewidth(2.) + zzttqq);
draw((5.24,2.8)--(5.111826910108407,-0.9522349243668591)--(11.08,-0.78)--(10.84,2.82)--cycle, linewidth(2.) + zzttqq);
/* draw figures */
draw((5.24,2.8)--(10.84,2.82), linewidth(2.) + zzttqq);
draw((10.84,2.82)--(11.08,-0.78), linewidth(2.) + zzttqq);
draw((11.08,-0.78)--(5.24,2.8), linewidth(2.) + zzttqq);
draw(circle((8.047086407998094,0.8258057605332061), 3.4317891830809644), linewidth(2.));
draw((5.24,2.8)--(5.111826910108407,-0.9522349243668591), linewidth(2.) + zzttqq);
draw((5.111826910108407,-0.9522349243668591)--(11.08,-0.78), linewidth(2.) + zzttqq);
draw((11.08,-0.78)--(10.84,2.82), linewidth(2.) + zzttqq);
draw((5.111826910108407,-0.9522349243668591)--(10.84,2.82), linewidth(2.));
draw((6.53,1.53)--(9.72,1.52), linewidth(2.));
draw((6.53,1.53)--(5.111826910108407,-0.9522349243668591), linewidth(2.));
draw((9.72,1.52)--(11.08,-0.78), linewidth(2.));
draw((9.72,1.52)--(8.159318418787835,4.2557592548047545), linewidth(2.));
draw((6.53,1.53)--(8.159318418787835,4.2557592548047545), linewidth(2.));
/* dots and labels */
dot((5.24,2.8),dotstyle);
label("$A$", (5.32,3.), NE * labelscalefactor);
dot((10.84,2.82),dotstyle);
label("$B$", (10.92,3.02), NE * labelscalefactor);
dot((11.08,-0.78),dotstyle);
label("$C$", (11.16,-0.58), NE * labelscalefactor);
dot((5.111826910108407,-0.9522349243668591),dotstyle);
label("$D$", (5.2,-0.76), NE * labelscalefactor);
dot((8.124522937395426,1.031747925363762),linewidth(4.pt) + dotstyle);
label("$O$", (8.2,1.2), NE * labelscalefactor);
dot((9.72,1.52),dotstyle);
label("$I$", (9.98,1.58), NE * labelscalefactor);
dot((6.53,1.53),dotstyle);
label("$J$", (6.28,1.66), NE * labelscalefactor);
dot((8.159318418787835,4.2557592548047545),dotstyle);
label("$E$", (8.24,4.46), NE * labelscalefactor);
dot((7.315749969195022,1.5275368339523665),linewidth(4.pt) + dotstyle);
label("$M$", (7.4,1.68), NE * labelscalefactor);
dot((8.86998441801185,1.5226646256488652),linewidth(4.pt) + dotstyle);
label("$N$", (8.94,1.68), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy][/asy]
Let $ E $ be the intersection of sides $ DI$ and $CJ$.
Claim Quadrilater $ ABIJ$ is cyclic.
Proof Straightforward from incenter lemma we obtain $EA=EJ=EI=EB$. Thus $ E $ is the centre of circle $(AIBJ)$
Let $ \angle ADJ=x$ ,$\angle BAJ=y$ and $\angle IBC=z$ . Now from simple angle chasing we get $ \angle ONM=\angle OMN=180^{\circ}-2x-y-z $,which leads to the conclusion.
Let $K_1, K_2$ be the incenters of triangles $\Delta AOB, \Delta DCO$; $L_1, L_2$ be the arc midpoints of $AB$ and $CD$.
$K_1 L_1 K_2 L_2$ is a kite, hence $K_1K_2 \perp L_1L_2$. By Pascal this gives $K_1O \perp L_1L_2$. Using the fact that $ABIJ$ is cyclic and some angle chasing, $L_1L_2$ is parallel to $IJ$, so $K_1O \perp IJ$. We are done now, since a triangle is isosceles if and only if the angle bisector opposite to a side is also an altitude.