Problem

Source: MEMO 2018 I2

Tags: memo, combinatorics, invariant, Coloring



The two figures depicted below consisting of $6$ and $10$ unit squares, respectively, are called staircases. Consider a $2018\times 2018$ board consisting of $2018^2$ cells, each being a unit square. Two arbitrary cells were removed from the same row of the board. Prove that the rest of the board cannot be cut (along the cell borders) into staircases (possibly rotated).


Attachments: