Problem

Source: Danube 2013 Junior P4

Tags: geometry, rectangle, perpendicular



Let $ABCD$ be a rectangle with $AB \ne BC$ and the center the point $O$. Perpendicular from $O$ on $BD$ intersects lines $AB$ and $BC$ in points $E$ and $F$ respectively. Points $M$ and $N$ are midpoints of segments $[CD]$ and $[AD]$ respectively. Prove that $FM \perp EN$ .