Problem

Source: Rioplatense Olympiad 2002 level 3 P4

Tags: algebra, Inequality, 3-variable inequality, inequalities



Let $a, b$ and $c$ be positive real numbers. Show that $\frac{a+b}{c^2}+ \frac{c+a}{b^2}+ \frac{b+c}{a^2}\ge \frac{9}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$