For $m = 1, 2, 3, ...$ denote $S(m)$ the sum of the digits of $m$, and let $f(m)=m+S(m)$. Show that for each positive integer $n$, there exists a number that appears exactly $n$ times in the sequence $f(1),f(2),...,f(m),...$
Source: Rioplatense Olympiad 2001 level 3 P6
Tags: sum of digits, number theory, Sequence
For $m = 1, 2, 3, ...$ denote $S(m)$ the sum of the digits of $m$, and let $f(m)=m+S(m)$. Show that for each positive integer $n$, there exists a number that appears exactly $n$ times in the sequence $f(1),f(2),...,f(m),...$