Problem

Source: I Caucasus 2015 10.5

Tags: geometry, altitudes, midpoints, equal angles, equal segments



Let $AA_1$ and $CC_1$ be the altitudes of the acute-angled triangle $ABC$. Let $K,L$ and $M$ be the midpoints of the sides $AB,BC$ and $CA$ respectively. Prove that if $\angle C_1MA_1 =\angle ABC$, then $C_1 K = A_1L$.