Let $n \in N$ such that $1 + 2 + ... + n$ is divisible by $3$. Integers $a_1\ge a_2\ge a_3\ge 2$ have sum $n$ and they satisfy $1 + 2 + ... + a_1\le \frac{1}{3}( 1 + 2 + ... + n ) $ and $1 + 2 + ... + (a_1+ a_2) \le \frac{2}{3}( 1 + 2 + ... + n )$. Prove that there is a partition of $\{ 1 , 2 , ... , n\}$ in three subsets $A_1, A_2, A_3$ with cardinals $| A_i| = a_i, i = 1 , 2 , 3$, and with equal sums of their elements .
Problem
Source: Rioplatense Olympiad 2014 level 3 P6
Tags: Sets, partition, number theory, inequalities