Problem

Source: IOM 2018 #6, Dušan Djukić

Tags: geometry, incircle



The incircle of a triangle $ABC$ touches the sides $BC$ and $AC$ at points $D$ and $E$, respectively. Suppose $P$ is the point on the shorter arc $DE$ of the incircle such that $\angle APE = \angle DPB$. The segments $AP$ and $BP$ meet the segment $DE$ at points $K$ and $L$, respectively. Prove that $2KL = DE$. Dušan Djukić