Problem

Source: MEMO 2018 T6

Tags: geometry, circumcircle, MEMO 2018



Let $ABC$ be a triangle . The internal bisector of $ABC$ intersects the side $AC$ at $ L$ and the circumcircle of $ABC$ again at $W \neq B.$ Let $K$ be the perpendicular projection of $L$ onto $AW.$ the circumcircle of $BLC$ intersects line $CK$ again at $P \neq C.$ Lines $BP$ and $AW$ meet at point $T.$ Prove that $$AW=WT.$$