Problem

Source: MEMO 2018 T4

Tags: number theory, algebra



Let $n$ be a positive integer and $u_1,u_2,\cdots ,u_n$ be positive integers not larger than $2^k, $ for some integer $k\geq 3.$ A representation of a non-negative integer $t$ is a sequence of non-negative integers $a_1,a_2,\cdots ,a_n$ such that $t=a_1u_1+a_2u_2+\cdots +a_nu_n.$ Prove that if a non-negative integer $t$ has a representation,then it also has a representation where less than $2k$ of numbers $a_1,a_2,\cdots ,a_n$ are non-zero.