Problem

Source: MEMO 2018 I1

Tags: algebra, function, functional equation



Let $Q^+$ denote the set of all positive rational number and let $\alpha\in Q^+.$ Determine all functions $f:Q^+ \to (\alpha,+\infty )$ satisfying $$f(\frac{ x+y}{\alpha}) =\frac{ f(x)+f(y)}{\alpha}$$for all $x,y\in Q^+ .$