[asy][asy]
size(6cm);
defaultpen(fontsize(9pt));
import geometry;
pair A, B, C, D, O, P, X;
guide w1, w2, c;
w1 = unitcircle;
w2 = circle((2, 0), 1.6);
pair[] op = intersectionpoints(w1, w2);
O = op[1]; P = op[0];
c = circle(O, 0.6);
pair[] ab = intersectionpoints(c, w1), cd = intersectionpoints(c, w2);
A = ab[1]; B = ab[0]; C = cd[0]; D = cd[1]; X = extension(A, C, B, D);
draw(w1^^w2, blue); draw(c, red); draw(A--X--D); draw(line(P, X), heavygreen+dashed);
dot("$A$", A, dir(-120));
dot("$B$", B, dir(25));
dot("$C$", C, dir(150));
dot("$D$", D, dir(-95));
dot("$P$", P, dir(93));
dot("$O$", O, dir(-105));
dot("$X$", X, dir(80));
[/asy][/asy]
Let $\omega_1$ and $\omega_2$ intersect again at $P$. We claim that $\angle OPX = 90^\circ$.
Let $Q = AB \cap CD$. Evidently $P$ and $Q$ are inverses wrt the variable circle; in particular, $O-P-X$ are collinear and $P$ lies on the polar of $Q$. By Brocard's theorem, so does $X$. Therefore, $\overline{PX}$ is the polar of $Q$, as desired.