Problem

Source: Hong Kong Team Selection Test 1

Tags: floor function, algebra



Find an integral solution of the equation \[ \left \lfloor \frac{x}{1!} \right \rfloor + \left \lfloor \frac{x}{2!} \right \rfloor + \left \lfloor \frac{x}{3!} \right \rfloor + \dots + \left \lfloor \frac{x}{10!} \right \rfloor = 2019. \](Note $\lfloor u \rfloor$ stands for the greatest integer less than or equal to $u$.)