Problem

Source: Sharygin 2013 Final 8.8

Tags: geometry, collinear, Circumcenter, arc



Let P be an arbitrary point on the arc $AC$ of the circumcircle of a fixed triangle $ABC$, not containing $B$. The bisector of angle $APB$ meets the bisector of angle $BAC$ at point $P_a$ the bisector of angle $CPB$ meets the bisector of angle $BCA$ at point $P_c$. Prove that for all points $P$, the circumcenters of triangles $PP_aP_c$ are collinear. by I. Dmitriev