Problem

Source: CWMI 2018 Q2

Tags: algebra, inequalities, fractional part, n-variable inequality



Let $n \geq 2$ be an integer. Positive reals $x_1, x_2, \cdots, x_n$ satisfy $x_1x_2 \cdots x_n = 1$. Show: $$\{x_1\} + \{x_2\} + \cdots + \{x_n\} < \frac{2n-1}{2}$$Where $\{x\}$ denotes the fractional part of $x$.