Let $I$ be the incenter of triangle $ABC$. The tangent point of $\odot I$ on $AB,AC$ is $D,E$, respectively. Let $BI \cap AC = F$, $CI \cap AB = G$, $DE \cap BI = M$, $DE \cap CI = N$, $DE \cap FG = P$, $BC \cap IP = Q$. Prove that $BC = 2MN$ is equivalent to $IQ = 2IP$.
Problem
Source: 2018 CGMO Day 2 Problem 8
Tags: geometry, incenter
14.08.2018 12:33
Progress : If $BC = 2MN$. Let $T$ be the midpoint of $BC$. Recall that $\angle BMC = \angle BNC = 120^{\circ}$ so $TB=TC=TM=TN=MN$. Thus $\Delta TMN$ is equilateral $$\angle NCM = 30^{\circ} \implies \angle BIC = 120^{\circ}\implies \angle BAC = 60^{\circ}$$This implies $AIFG$ is cyclic or $IF=IG$. Thus $\overline{DPE}$ is Simson line of $I$ w.r.t. $\Delta AFG$. This implies $P$ is the foot from $I$ to $FG$ or $IP$ bisects $\angle FIG \equiv \angle BIC$. Hence $\Delta IMN\cup P\sim\Delta IBC\cup Q$, implying the conclusion.
15.08.2018 17:43
Problem : Given a $ \triangle ABC $ with incenter $ I, $ intouch triangle $ \triangle DEF $ and incentral triangle $ \triangle XYZ. $ Let $ P $ be the intersection of $ EF, YZ $ and $ Q $ be the intersection of $ BC, IP. $ Prove that $ IP = 2IQ \Longleftrightarrow BC = 2UV $ where $ U,V $ is the intersection of $ EF $ with $ BI, CI, $ respectively. Proof : Clearly, $ B, C, U, Z $ lie on the circle with diameter $ BC, $ so $ UV = BC \cdot \sin \frac{1}{2} \angle A $ and hence $ BC = 2UV $ if and only if $ \angle A = 60^{\circ}. $ Let $ \tau \equiv \overline{A^*B^*C^*} $ be the perspectrix of $ \triangle ABC,\ \triangle XYZ $ and $ \overline{P}, \overline{Q}, \overline{R} $ be the intersection of the parallel from $ I $ to $ \tau $ with $ YZ, BC, AA^*, $ respectively. Since $ A^*(\overline{P},\tau; \overline{Q}, \overline{R}) = -1 = (\overline{P}, \overline{Q}; I, \overline{R}), $ so $ \overline{P}\overline{Q} = \overline{P}\overline{R} $ and $ I \overline{Q} = 2 I \overline{P}. $ Let $ T $ be the midpoint of $ EF, $ then note that $ AA^* \parallel EF $ we conclude that $$ IP = 2IQ\ \Longleftrightarrow\ \overline{P} \in EF\ \Longleftrightarrow\ \frac{AI}{TI} = 4\ \Longleftrightarrow\ \angle A = 60^{\circ}\ \Longleftrightarrow\ BC = 2UV. $$
16.08.2018 17:04
We have \(BN \perp CN\) and \(BM \perp CM \Rightarrow BCMN\) is cyclic \(\Rightarrow \Delta BIC \sim \Delta MIN \therefore \dfrac{BC}{MN}= \dfrac{IQ}{IP},\) Q.E.D
16.08.2018 17:11
RC. wrote: We have \(BN \perp CN\) and \(BM \perp CM \Rightarrow BCMN\) is cyclic \(\Rightarrow \Delta BIC \sim \Delta MIN\), Q.E.D I don't think you have completed your proof.
16.08.2018 18:02
RC. wrote: We have \(BN \perp CN\) and \(BM \perp CM \Rightarrow BCMN\) is cyclic \(\Rightarrow \Delta BIC \sim \Delta MIN \therefore \dfrac{BC}{MN}= \dfrac{IQ}{IP},\) Q.E.D Can you clarify that why $P,Q$ are corresponding points in the similar triangles?
29.03.2019 00:49
. Assuming the problem is for an acute triangle instead, here is a solution.