Problem

Source: 2018 CGMO Day 2 Problem 6

Tags: combinatorics, set, Integer



Given $k \in \mathbb{N}^+$. A sequence of subset of the integer set $\mathbb{Z} \supseteq I_1 \supseteq I_2 \supseteq \cdots \supseteq I_k$ is called a $k-chain$ if for each $1 \le i \le k$ we have (i) $168 \in I_i$; (ii) $\forall x, y \in I_i$, we have $x-y \in I_i$. Determine the number of $k-chain$ in total.