Problem

Source: 2018 CGMO Day 1 Problem 3

Tags: number theory, inequalities



Given a real sequence $\left \{ x_n \right \}_{n=1}^{\infty}$ with $x_1^2 = 1$. Prove that for each integer $n \ge 2$, $$\sum_{i|n}\sum_{j|n}\frac{x_ix_j}{\textup{lcm} \left ( i,j \right )} \ge \prod_{\mbox{\tiny$\begin{array}{c} p \: \textup{is prime} \\ p|n \end{array}$} }\left ( 1-\frac{1}{p} \right ). $$