Given a real sequence $\left \{ x_n \right \}_{n=1}^{\infty}$ with $x_1^2 = 1$. Prove that for each integer $n \ge 2$, $$\sum_{i|n}\sum_{j|n}\frac{x_ix_j}{\textup{lcm} \left ( i,j \right )} \ge \prod_{\mbox{\tiny$\begin{array}{c} p \: \textup{is prime} \\ p|n \end{array}$} }\left ( 1-\frac{1}{p} \right ). $$
Problem
Source: 2018 CGMO Day 1 Problem 3
Tags: number theory, inequalities
13.08.2018 13:53
In this solution, let $\varphi (n)$ denote the Euler's totient function. Note that the RHS is equal to $\varphi (n)/n$. We will write the expression in left hand side as linear combination of $\Big( \sum_{i\mid d}{x_i}\Big)^2$ where $d$ varies on the set of divisor of $n$. Let the coefficient of each term, as a variable of $d$, equal to $c_d$. Comparing the coefficient of $x_ix_j$, we get that the sufficient and necessary condition for $c_d$'s is $$\sum_{\mathrm{lcm} (i,j)\mid d\mid n}{c_d} =\frac{1}{\mathrm{lcm} (i,j)}.$$Note that we have $\sum_{\mathrm{lcm} (i,j)\mid d\mid n}{c_d} =\sum_{d\mid \frac{n}{\mathrm{lcm} (i,j)}}{c_{n/d}}.$ So we can simply let $c_{n/d}=\frac{\varphi (d)}{n}\implies c_d=\frac{\varphi (n/d)}{n}$. Hence, we get $$RHS=\sum_{d\mid n}{\left( \frac{\varphi (n/d)}{n}\Big( \sum_{i\mid d}{x_i}\Big)^2 \right)}\geqslant \frac{\varphi (n)}{n} x_1^2=LHS \qquad \blacksquare$$
09.10.2018 10:23
Make the observation as in the post above that the RHS is equal to $ \frac{ \varphi (n)}{n} $. Now, let us recall that $ \sum_{d \mid n} \varphi(d) = n $, which upon replacing $ n $ with $ \gcd(i,j) $ gives $ \boxed{\sum_{d \mid \gcd(i,j)} \varphi(d) = \gcd(i,j)} $. With that in mind, we return to manipulating the expression on the LHS: $ \sum_{i|n}\sum_{j|n}\frac{x_ix_j}{\textup{lcm} \left ( i,j \right )} = \sum_{i|n}\sum_{j|n}\frac{x_{\frac{n}{i}}x_{\frac{n}{j}}}{n} \gcd (i,j) \\ (*) $ Recalling the boxed expression, in a bid to separate the variables, we are motivated to define $ \epsilon_i(r) $ as follows, $ \epsilon_i(r) = \begin{cases} \sqrt{ \varphi(r)} & \text{when } r \mid i \\ 0 &\text{otherwise} \\ \end{cases} $. This is because we conveniently have $ \gcd(i,j) = \sum_{r=1}^{n} \epsilon_i(r) \epsilon_j(r) $ since the product only evaluates to a nonzero value of $r$ when $ r \mid i, r\mid j \Rightarrow r \mid \gcd(i,j) $ and then we are reduced to the boxed expression. Now, we can go back to $ (*) $, $ \sum_{i|n}\sum_{j|n}\frac{x_{\frac{n}{i}}x_{\frac{n}{j}}}{n} \sum_{r=1}^{n} \epsilon_i(r) \epsilon_j(r) = \frac{1}{n} \sum_{r=1}^{n} \left(\sum_{i|n } x_{\frac{n}{i}} \epsilon_i(r) \right)^2 \geq \frac{1}{n} \left(\sum_{i|n } x_{\frac{n}{i}} \epsilon_i(n) \right)^2 = \frac{ \varphi(n)}{n} x_1^2 = \frac{ \varphi(n)}{n} = \text{RHS} $, as desired.
29.03.2019 01:02