Problem

Source: CGMO 2018 Day 1 Q1

Tags: algebra, inequalities



Let $a\le 1$ be a real number. Sequence $\{x_n\}$ satisfies $x_0=0, x_{n+1}= 1-a\cdot e^{x_n}$, for all $n\ge 1$, where $e$ is the natural logarithm. Prove that for any natural $n$, $x_n\ge 0$.