Consider a tetrahedron $ABCD$. A point $X$ is chosen outside the tetrahedron so that segment $XD$ intersects face $ABC$ in its interior point. Let $A' , B'$ , and $C'$ be the projections of $D$ onto the planes $XBC, XCA$, and $XAB$ respectively. Prove that $A' B' + B' C' + C' A' \le DA + DB + DC$. (V.Yassinsky)
Problem
Source: 2012 Sharygin Geometry Olympiad Final Round 10.6
Tags: geometry, 3D geometry, tetrahedron, inequalities