Problem

Source: 2012 Sharygin Geometry Olympiad Final Round 10.5

Tags: geometry, arc, circles, inscribed circles



A quadrilateral $ABCD$ with perpendicular diagonals is inscribed into a circle $\omega$. Two arcs $\alpha$ and $\beta$ with diameters AB and $CD$ lie outside $\omega$. Consider two crescents formed by the circle $\omega$ and the arcs $\alpha$ and $\beta$ (see Figure). Prove that the maximal radii of the circles inscribed into these crescents are equal. (F.Nilov)


Attachments: