A convex pentagon $P $ is divided by all its diagonals into ten triangles and one smaller pentagon $P'$. Let $N$ be the sum of areas of five triangles adjacent to the sides of $P$ decreased by the area of $P'$. The same operations are performed with the pentagon $P'$, let $N'$ be the similar difference calculated for this pentagon. Prove that $N > N'$. (A.Belov)
Problem
Source: 2012 Sharygin Geometry Olympiad Final Round 9.7
Tags: geometry, pentagon, diagonals, geometric inequality, convex