Three parallel lines passing through the vertices $A, B$, and $C$ of triangle $ABC$ meet its circumcircle again at points $A_1, B_1$, and $C_1$ respectively. Points $A_2, B_2$, and $C_2$ are the reflections of points $A_1, B_1$, and $C_1$ in $BC, CA$, and $AB$ respectively. Prove that the lines $AA_2, BB_2, CC_2$ are concurrent. (D.Shvetsov, A.Zaslavsky)
Problem
Source: 2012 Sharygin Geometry Olympiad Final Round 9.2
Tags: geometry, geometric transformation, reflection, concurrency, concurrent