Problem

Source: 2012 Sharygin Geometry Olympiad Final Round 9.1

Tags: geometry, altitudes



The altitudes $AA_1$ and $BB_1$ of an acute-angled triangle ABC meet at point $O$. Let $A_1A_2$ and $B_1B_2$ be the altitudes of triangles $OBA_1$ and $OAB_1$ respectively. Prove that $A_2B_2$ is parallel to $AB$. (L.Steingarts)