Problem

Source: 2012 Sharygin Geometry Olympiad Final Round 8.7

Tags: geometry, altitudes



The altitudes $AA_1$ and $CC_1$ of an acute-angled triangle $ABC$ meet at point $H$. Point $Q$ is the reflection of the midpoint of $AC$ in line $AA_1$, point $P$ is the midpoint of segment $A_1C_1$. Prove that $\angle QPH = 90^o$. (D.Shvetsov)