Problem

Source: 2015 Sharygin Geometry Olympiad Correspondence Round P11

Tags: geometry, perimeter



Let $H$ be the orthocenter of an acute-angled triangle A$BC$. The perpendicular bisector to segment $BH$ meets $BA$ and $BC$ at points $A_0, C_0$ respectively. Prove that the perimeter of triangle $A_0OC_0$ ($O$ is the circumcenter of triangle $ABC$) is equal to $AC$.