Problem

Source: 2015 Sharygin Geometry Olympiad Correspondence Round P9

Tags: geometry, construction



Let $ABC$ be an acute-angled triangle. Construct points $A', B', C'$ on its sides $BC, CA, AB$ such that: - $A'B' \parallel AB$, - $C'C$ is the bisector of angle $A'C'B'$, - $A'C' + B'C'= AB$.