Problem

Source: Sharygin finals 10.8

Tags: geometry



Two triangles $ABC$ and $A'B'C'$ are given. The lines $AB$ and $A'B'$ meet at $C_1$ and the lines parallel to them and passing through $C$ and $C'$ meet at $C_2$. The points $A_1,A_2$, $B_1,B_2$ are defined similarly. Prove that $A_1A_2,B_1B_2,C_1C_1$ are either parallel or concurrent.