Problem

Source: Sharygin Geometry Olympiad 2015 Final 9.7

Tags: geometry, angle, orthocenter, Centroid



Let $ABC$ be an acute-angled, nonisosceles triangle. Altitudes $AA'$ and $BB' $meet at point $H$, and the medians of triangle $AHB$ meet at point $M$. Line $CM$ bisects segment $A'B'$. Find angle $C$. (D. Krekov)