Problem

Source: Sharygin 2018 Grade 9, Day 1, P2

Tags: geometry



A triangle $ABC$ is given. A circle $\gamma$ centered at $A$ meets segments $AB$ and $AC$. The common chord of $\gamma$ and the circumcircle of $ABC$ meets $AB$ and $AC$ at $X$ and $Y$, respectively. The segments $CX$ and $BY$ meet $\gamma$ at point $S$ and $T$, respectively. The circumcircles of triangles $ACT$ and $BAS$ meet at points $A$ and $P$. Prove that $CX, BY$ and $AP$ concur.