Problem

Source: Sharygin Geometry Olympiad 2016 First Round P12 grades 9-10

Tags: geometry, Concyclic, symmedian



Let $BB_1$ be the symmedian of a nonisosceles acute-angled triangle $ABC$. Ray $BB_1$ meets the circumcircle of $ABC$ for the second time at point $L$. Let $AH_A, BH_B, CH_C$ be the altitudes of triangle $ABC$. Ray $BH_B$ meets the circumcircle of $ABC$ for the second time at point $T$. Prove that $H_A, H_C, T, L$ are concyclic.