Problem

Source: Sharygin Geometry Olympiad 2017 First Round P20 grades 10-11

Tags: geometry, Locus, geometric transformation, reflection



Given a right-angled triangle $ABC$ and two perpendicular lines $x$ and $y$ passing through the vertex $A$ of its right angle. For an arbitrary point $X$ on $x$ define $y_B$ and $y_C$ as the reflections of $y$ about $XB$ and $ XC $ respectively. Let $Y$ be the common point of $y_b$ and $y_c$. Find the locus of $Y$ (when $y_b$ and $y_c$ do not coincide).