Problem

Source: Sharygin Geometry Olympiad 2017 First Round P15 grades 9-11

Tags: geometry, circumscribed quadrilateral, perpendicular, incircle



Let $ABC$ be an acute-angled triangle with incircle $\omega$ and incenter $I$. Let $\omega$ touch $AB, BC$ and $CA $ at points $D, E, F$ respectively. The circles $\omega_1$ and $\omega_2$ centered at $J_1$ and $J_2$ respectively are inscribed into A$DIF$ and $BDIE$. Let $J_1J_2$ intersect $AB$ at point $M$. Prove that $CD$ is perpendicular to $IM$.