Problem

Source: Sharygin 2015 Finals Grade 9 Problem 8

Tags: geometry, circumcircle



A perpendicular bisector of side $BC$ of triangle $ABC$ meets lines $AB$ and $AC$ at points $A_B$ and $A_C$ respectively. Let $O_a$ be the circumcenter of triangle $AA_BA_C$. Points $O_b$ and $O_c$ are defined similarly. Prove that the circumcircle of triangle $O_aO_bO_c$ touches the circumcircle of the original triangle.