[asy][asy]
size(10cm);
pair O = origin;
pair A = dir(120);
pair B = dir(200);
pair C = dir(240);
pair D = dir(340);
draw(unitcircle);
draw(A--B--C--D--cycle);
draw(A--C);
draw(B--D);
pair X = extension(A, A+dir(90)*A, C, C+dir(90)*C);
pair Y = extension(A, X, B, D);
pair Z = extension (C, X, B, D);
pair E = extension(A, C, B, D);
draw(Y--Z--B);
draw(A--X--Y);
draw(C--Z--X);
draw(circumcircle(B,O,D),red);
draw(circumcircle(A,O,C),heavycyan);
draw(circumcircle(X,Y,Z),red);
dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$C$", C, dir(C)); dot("$D$", D, dir(D)); dot("$X$", X, dir(X)); dot("$Y$", Y, dir(Y)); dot("$Z$", Z, dir(Z)); dot("$O$", O, dir(50)); dot("$E$", E, dir(E));
[/asy][/asy]
$$\text{Figure 1: The Big Picture}$$
Above is the big picture. $E = AC \cap BD, X = AA \cap CC, Y = AX \cap BD, Z = CX \cap BD.$
Now we consider a smaller diagram:
[asy][asy]
size(10cm);
pair O = origin;
pair A = dir(120);
pair B = dir(200);
pair C = dir(240);
pair D = dir(340);
draw(unitcircle);
draw(A--B--C--D--cycle);
draw(A--C);
draw(B--D);
pair E = extension(A, C, B, D);
draw(circumcircle(B,O,D),red);
path w = circumcircle(B,O,D);
path ao = (10*A-9*O)--(10*O-9*A);
pair G = OP(ao,w);
path co = (10*C-9*O)--(10*O-9*C);
pair H = IP(co, w);
dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$C$", C, dir(C)); dot("$D$", D, dir(D)); dot("$O$", O, dir(50)); dot("$E$", E, dir(E)); dot("$G$", G, dir(G)); dot("$H$", H, dir(H));
draw(A--O--G);
draw(H--C--O);
draw(H--G);
[/asy][/asy]
$$\text{Figure 2: A Small Configuration}$$
Denote $(BOD)=\omega$.
Next, let $G=AO\cap\omega, H=CO\cap\omega$.
Now we note that $\angle BAC=90^{\circ}-\angle DBA = 90^{\circ}-\frac{1}{2}\angle DOA = \angle OAD$.
Hence $\angle BOC=\angle GOD$.
Which means that $HG$ is parallel to $BD$.
Next we consider a larger diagram:
[asy][asy]
size(10cm);
pair O = origin;
pair A = dir(120);
pair B = dir(200);
pair C = dir(240);
pair D = dir(340);
draw(unitcircle);
draw(A--B--C--D--cycle);
draw(A--C);
draw(B--D);
pair E = extension(A, C, B, D);
draw(circumcircle(B,O,D),red);
path w = circumcircle(B,O,D);
path ao = (10*A-9*O)--(10*O-9*A);
pair G = OP(ao,w);
path co = (10*C-9*O)--(10*O-9*C);
pair H = IP(co, w);
draw(A--O--G);
draw(H--C--O);
draw(H--G);
path eg = (10*E-9*G)--(10*G-9*E);
path eh = (10*E-9*H)--(10*H-9*E);
pair P = IP(eg,w);
pair Q = IP(eh, w);
draw(G--P);
draw(H--Q);
pair foot = foot(O, B, D);
path ofoot = (10*O-9*foot)--(10*foot-9*O);
pair M = OP(ofoot,w);
draw(A--Q--M, orange+dashed);
dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$C$", C, dir(C)); dot("$D$", D, dir(D)); dot("$O$", O, dir(50)); dot("$E$", E, dir(E)); dot("$G$", G, dir(G)); dot("$H$", H, dir(H)); dot("$P$", P, dir(P)); dot("$Q$", Q, dir(Q)); dot("$M$", M, dir(M));
[/asy][/asy]
$$\text{Figure 3: Extending the Configuration}$$
Let $P = GE \cap \omega, Q = HE \cap \omega$.
Now note that $AE\cdot EC = BE\cdot ED = HE\cdot EQ$, hence $AQCH$ cyclic.
Also note that $\angle AQH + \angle HQM = \angle ACH + \angle HOM = 180^{\circ}-\angle ACO + \angle HOM = 180^{\circ}$
Hence $A, Q, M$ collinear.
$\angle BEP = \angle HGP = \angle HQP = \angle EQP$.
Hence $(EQP)$ is tangent to $BD$ at $E$.
[asy][asy]
size(10cm);
pair O = origin;
pair A = dir(120);
pair B = dir(200);
pair C = dir(240);
pair D = dir(340);
draw(unitcircle);
draw(A--B--C--D--cycle);
draw(A--C);
draw(B--D);
pair E = extension(A, C, B, D);
draw(circumcircle(B,O,D),red);
path w = circumcircle(B,O,D);
path ao = (10*A-9*O)--(10*O-9*A);
pair G = OP(ao,w);
path co = (10*C-9*O)--(10*O-9*C);
pair H = IP(co, w);
draw(A--O--G);
draw(H--C--O);
draw(H--G);
path eg = (10*E-9*G)--(10*G-9*E);
path eh = (10*E-9*H)--(10*H-9*E);
pair P = IP(eg,w);
pair Q = IP(eh, w);
draw(G--P);
draw(H--Q);
pair foot = foot(O, B, D);
path ofoot = (10*O-9*foot)--(10*foot-9*O);
pair M = OP(ofoot,w);
draw(A--Q--M, orange+dashed);
pair I = foot(O, A, C);
draw(circumcircle(E, Q, P), green);
dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$C$", C, dir(C)); dot("$D$", D, dir(D)); dot("$O$", O, dir(50)); dot("$E$", E, dir(E)); dot("$G$", G, dir(G)); dot("$H$", H, dir(H)); dot("$P$", P, dir(P)); dot("$Q$", Q, dir(240)); dot("$M$", M, dir(M)); dot("$I$", I, dir(I));
[/asy][/asy]
$$\text{Figure 4: The Final Configuration}$$
Now let $I$ be the midpoint of $AC$.
We remark that $\angle AIO = 90^{\circ}=\angle AQO$.
Note that $\angle EQI = 180^{\circ}-\angle AQI-\angle EQM = 180^{\circ}-\angle AOI - \angle HOM = 90^{\circ}$.
Similarly, we can show that $\angle EPI = 90^{\circ}$.
Hence $E, Q, P, I$ are concyclic, with circumcircle tangent to $BD$ at $E$.
Now invert the diagram with respect to $(O)$. This results in the first diagram, and we are done.