Let $AA_1$, $BB_1$, $CC_1$ be the altitudes of an acute-angled, nonisosceles triangle $ABC$, and $A_2$, $B_2$, $C_2$ be the touching points of sides $BC$, $CA$, $AB$ with the correspondent excircles. It is known that line $B_1C_1$ touches the incircle of $ABC$. Prove that $A_1$ lies on the circumcircle of $A_2B_2C_2$.