Problem

Source: Sharygin geometry olympiad 2015, grade 10, Final Round, Problem 3

Tags: geometry



Let $A_1$, $B_1$ and $C_1$ be the midpoints of sides $BC$, $CA$ and $AB$ of triangle $ABC$, respectively. Points $B_2$ and $C_2$ are the midpoints of segments $BA_1$ and $CA_1$ respectively. Point $B_3$ is symmetric to $C_1$ wrt $B$, and $C_3$ is symmetric to $B_1$ wrt $C$. Prove that one of common points of circles $BB_2B_3$ and $CC_2C_3$ lies on the circumcircle of triangle $ABC$.