Problem

Source: 2015 Brazilian Olympic Revenge

Tags: Invariants, olympic revenge, algebra



Given $v = (a,b,c,d) \in \mathbb{N}^4$, let $\Delta^{1} (v) = (|a-b|,|b-c|,|c-d|,|d-a|)$ and $\Delta^{k} (v) = \Delta(\Delta^{k-1} (v))$ for $k > 1$. Define $f(v) = \min\{k \in \mathbb{N} : \Delta^k (v) = (0,0,0,0)\}$ and $\max(v) = \max\{a,b,c,d\}.$ Show that $f(v) < 1000\log \max(v)$ for all sufficiently large $v$ and $f(v) > 0.001 \log \max (v)$ for infinitely many $v$.