Problem

Source: 2nd IMOR - 2018

Tags: IMOR, geometry



Let $G$ be the centroid of a triangle $\triangle ABC$ and let $AG, BG, CG$ meet its circumcircle at $P, Q, R$ respectively. Let $AD, BE, CF$ be the altitudes of the triangle. Prove that the radical center of circles $(DQR),(EPR),(FPQ)$ lies on Euler Line of $\triangle ABC$. Proposed by Ivan Chai, Malaysia.