$a_1,a_2,...,a_k$ are positive integers and $\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_k}>1$. Prove that equation $$[\frac{n}{a_1}]+[\frac{n}{a_2}]+...+[\frac{n}{a_k}]=n$$has no more than $a_1*a_2*...*a_k$ postivie integer solutions in $n$.
Source: Moscow Olympiad 2018, Grade 9, P3
Tags: number theory
$a_1,a_2,...,a_k$ are positive integers and $\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_k}>1$. Prove that equation $$[\frac{n}{a_1}]+[\frac{n}{a_2}]+...+[\frac{n}{a_k}]=n$$has no more than $a_1*a_2*...*a_k$ postivie integer solutions in $n$.